The effect of the number of parallel DNA molecules on electric charge transport through 'standing DNA'.

نویسندگان

  • Daniela Ullien
  • Hezy Cohen
  • Danny Porath
چکیده

We present morphological and electrical characterization of double-stranded DNA (dsDNA) molecules covalently bound to two metal electrodes: an underlying gold surface and a gold nanoparticle (GNP). Conductive atomic force microscope (cAFM) with a metallized tip is used to perform current-voltage (I-V) measurements through dsDNA molecules, connected to GNPs of different diameters 5, 10 and 20 nm. The number of DNA molecules coating the GNP is expected to vary with the surface area of the GNP. This number and the portion of the GNP surface area enabling hybridization of the DNA determine the number of DNA molecules connecting the GNP to the gold surface. The larger the diameter of the GNP the higher the expected number of dsDNA molecules connecting it to the gold surface and thus the expected current. Our results show similar currents for all three GNP sizes, indicating that current flows through the same number of molecules regardless of the diameter of the measured GNP. The measured currents, 220 nA at 2 V, are in accordance with our previous reports (Cohen et al 2005 Proc. Natl Acad. Sci. USA 102 11589-93; Cohen et al 2006 Faraday Discuss. 131 367-76) in which we demonstrated the validity of the experimental system. In particular, for the 5 nm GNP, we conclude that the current possibly flows through two to three molecules, likely only one, and that a single short dsDNA molecule can support at least ∼70 nA, and probably 220 nA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل رفتار DNA در گذر از ریز ساختارها بر اساس معادله فوکر-پلانک و مدل سد آنتروپی

We considered the motion of DNA molecules through a hexagonal array under uniform electric fields as a Fokker-Planck process which is affected by the entropic barriers and we have simulated this motion by computer. We solved the Fokker-Planck equation with numerical simulation of the Brownian dynamics by the Euler method. For different DNA molecules, under different physical conditions, the mea...

متن کامل

Transverse charge transport through DNA oligomers in large-area molecular junctions.

We investigate the nature of charge transport in deoxyribonucleic acid (DNA) using self-assembled layers of DNA in large-area molecular junctions. A protocol was developed that yields dense monolayers where the DNA molecules are not standing upright, but are lying flat on the substrate. As a result the charge transport is measured not along the DNA molecules but in the transverse direction, acr...

متن کامل

Electronic transport through dsDNA based junction: a Fibonacci model

A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization schem...

متن کامل

Bistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit

We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...

متن کامل

Modelling the effect of structure and base sequence on DNA molecular electronics.

DNA is a material that has the potential to be used in nanoelectronic devices as an active component. However, the electronic properties of DNA responsible for its conducting behaviour remain controversial. Here we use a self-consistent quantum molecular dynamics method to study the effect of DNA structure and base sequence on the energy involved when electrons are added or removed from isolate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 18 42  شماره 

صفحات  -

تاریخ انتشار 2007